C.U.SHAH UNIVERSITY Summer Examination-2016

Subject Name : Discrete Mathematics

Subje	ect Code: 4TEC	4DSM1	Branch : B.Tech(CE,IT)		
Seme	ster: 4	Date: 07/05/2016	Time : 2:30 To 5:30	Marks : 70	
(1 (2 (3) Instructions w) Draw neat dia		y other electronic instrument is p ook are strictly to be obeyed. cessary) at right places.	orohibited.	
Q-1	Attempt the fo	ollowing questions:		(1	14)
a)	Define a compl	•			
b)	Give examples	of isomorphic graphs.			
c)	Give an examp	le of an edge simple path	1.		
d)	How many edg	ges are there in a graph w	ith 10 nodes each of degree 5?		
e)	Give an examp	le of a non-commutative	group.		
f)	-	le of a cyclic group.			
g)		al subgroup of a group G			
h)			he poset $\langle N, D \rangle$, if they exist.		
i)	Define: Bound				
	Define: Sub alg	=b then $ab' + a'b = 0$.			
l)			d, e, e, e, e, e be arranged so that	it no <i>e</i> is	
m) n)	adiacent to ano State pigeonho	ther e?	-		
Attempt	t any four quest	ions from Q-2 to Q-8			
Q-2	Attempt all qu	iestions		(1	14)
a)	Let $\langle L, *, \oplus, ', 0 \rangle$	$\langle 1 \rangle$ be a complemented la	attice and for any $a, b \in L$ then provide the provided	rove that (0)7)
		$= 0 \Leftrightarrow b' \leq a' \Leftrightarrow a' \oplus b =$			
b)			by that $1+3+5++(2n-1) = n$	² . (0)7)
	ii) Solve the re-	currence relation $a_{n+1} - 2a_{n+1}$	$a_n = 5; n \ge 0; a_0 = 1.$		

Page 1 of 3

Q-3	Attempt all questions	(14)			
a)	Prove that $\langle P(\{a,b,c\}),\subseteq \rangle$ is a complemented lattice and also draw the Hasse	(07)			
	diagram of it.				
b)	Let $\langle L, \leq \rangle$ be a lattice and $a, b, c \in L$ then show that the following are equivalent.				
	i) $a*(b\oplus c)=(a*b)\oplus(a*c)$				
	ii) $a \oplus (b * c) = (a \oplus b) * (a \oplus c)$				
Q-4	Attempt all questions	(14)			
a)	For a lattice $\langle S_{90}, D \rangle$, answer the following questions:	(07)			
	 i) Find cover of each element and draw the Hasse diagram. ii) Find lower bound, upper bound, greatest lower bound, least upper bound of <i>A</i> = {3,5,6}. 				
	iii) Find the least and greatest element of it.				
b)	Let $E = \{a, b, c, d, e\}, A = \{(a, 0.3), (b, 0.8), (c, 0.5), (d, 0.1), (e, 0.9)\},\$	(07)			
	$\underline{B} = \{(a, 0.7), (b, 0.6), (c, 0.4), (d, 0.2), (e, 0.1)\}$ then find the following:				
	1) $A \cup B = 2$ $A \cdot B = 3$ $A + B = 4$ $A - B = 5$ $A \cap B = 6$ $(A')' = 7$ B'				
Q-5	Attempt all questions	(14)			
a) b)	State and prove Stone's representation theorem.				

Obtain the sum of product canonical form of the Boolean expression in three variables (04) **b**) $\alpha(x, y, z) = y' + \left[z' + x + (yz)'\right](z + x'y).$

Q-6 Attempt all questions

- (14) a) Show that the sum of indegrees of all the nodes of a simple digraph is equal to the (05) sum of outdegrees of all its nodes, and that this sum is equal to the number of edges of the graph. Explain this statement by a simple example.
- **b**) For a simple digraph $G = \langle V, E \rangle$, where $V = \{1, 2, 3, 4\}$ and $E = \{\langle 1, 4 \rangle, \langle 1, 2 \rangle$ (05) <2, 4>, <2, 3>, <3, 4>, <4, 3>}, give matrix representation A of G with ordering 1, 2, 3, 4. Also draw the directional dual of G and show that its matrix representation is A^{T} .
- c) List the ways in which a directed tree can be represented graphically. Express the (04) algebraic expression ab + (c + d/e) f in a directed tree.

Q-7 Attempt all questions

a) Define: (1) directed tree; and (2) descendent of a node and son of a node with (05) examples.

(14)

b) Define a subgroup of a group G. Let H be a nonempty subset of a group G. Show that (05)H is a subgroup of G if and only if $ab^{-1} \in H$, whenever a, $b \in H$.

Page 2 of 3

c) Symbolize the statement "given any positive integer, there is a greater positive (04) integer" with and without universe of discourse.

Q-8 a)	Attempt all questions Show that the set $Q \setminus \{-1\}$ is an abelian group with respect to the binary operation	(14) (05)
L)	$a * b = a + b + ab$, for all a, b \in G.	(05)
b)	State and prove the Lagrange's theorem. Let $G = Q^+$, $a * b = \frac{ab}{2}$, Find the identity element and a^{-1} in G.	(05)
C)	Let $G = Q$, $a * b = \frac{1}{2}$, Find the identity element and a find.	(04)

Page 3 of 3

